Cdc42 regulates the Par-6 PDZ domain through an allosteric CRIB-PDZ transition.

نویسندگان

  • Francis C Peterson
  • Rhiannon R Penkert
  • Brian F Volkman
  • Kenneth E Prehoda
چکیده

Regulation of protein interaction domains is required for cellular signaling dynamics. Here, we show that the PDZ protein interaction domain from the cell polarity protein Par-6 is regulated by the Rho GTPase Cdc42. Cdc42 binds to a CRIB domain adjacent to the PDZ domain, increasing the affinity of the Par-6 PDZ for its carboxy-terminal ligand by approximately 13-fold. Par-6 PDZ regulation is required for function as mutational disruption of Cdc42-Par-6 PDZ coupling leads to inactivation of Par-6 in polarized MDCK epithelial cells. Structural analysis reveals that the free PDZ domain has several deviations from the canonical PDZ conformation that account for its low ligand affinity. Regulation results from a Cdc42-induced conformational transition in the CRIB-PDZ module that causes the PDZ to assume a canonical, high-affinity PDZ conformation. The coupled CRIB and PDZ architecture of Par-6 reveals how simple binding domains can be combined to yield complex regulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Allosteric activation of the Par-6 PDZ via a partial unfolding transition.

Proteins exist in a delicate balance between the native and unfolded states, where thermodynamic stability may be sacrificed to attain the flexibility required for efficient catalysis, binding, or allosteric control. Partition-defective 6 (Par-6) regulates the Par polarity complex by transmitting a GTPase signal through the Cdc42/Rac interaction binding PSD-95/Dlg/ZO-1 (CRIB-PDZ) module that al...

متن کامل

A human homolog of the C. elegans polarity determinant Par-6 links Rac and Cdc42 to PKCζ signaling and cell transformation

BACKGROUND Rac and Cdc42 are members of the Rho family of small GTPases. They modulate cell growth and polarity, and contribute to oncogenic transformation by Ras. The molecular mechanisms underlying these functions remain elusive, however. RESULTS We have identified a novel effector of Rac and Cdc42, hPar-6, which is the human homolog of a cell-polarity determinant in Caenorhabditis elegans....

متن کامل

Assembly of Epithelial Tight Junctions Is Negatively Regulated by Par6

Epithelial cells display apical-basal polarity, and the apical surface is segregated from the basolateral membranes by a barrier called the tight junction (TJ). TJs are constructed from transmembrane proteins that form cell-cell contacts-claudins, occludin, and junctional adhesion molecule (JAM)-plus peripheral proteins such as ZO-1. The Par proteins (partitioning-defective) Par3 and Par6, plus...

متن کامل

A Rich1/Amot Complex Regulates the Cdc42 GTPase and Apical-Polarity Proteins in Epithelial Cells

Using functional and proteomic screens of proteins that regulate the Cdc42 GTPase, we have identified a network of protein interactions that center around the Cdc42 RhoGAP Rich1 and organize apical polarity in MDCK epithelial cells. Rich1 binds the scaffolding protein angiomotin (Amot) and is thereby targeted to a protein complex at tight junctions (TJs) containing the PDZ-domain proteins Pals1...

متن کامل

Preso, a novel PSD-95-interacting FERM and PDZ domain protein that regulates dendritic spine morphogenesis.

PSD-95 is an abundant postsynaptic density (PSD) protein involved in the formation and regulation of excitatory synapses and dendritic spines, but the underlying mechanisms are not comprehensively understood. Here we report a novel PSD-95-interacting protein Preso that regulates spine morphogenesis. Preso is mainly expressed in the brain and contains WW (domain with two conserved Trp residues),...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cell

دوره 13 5  شماره 

صفحات  -

تاریخ انتشار 2004